leetcode-236-Lowest Common Ancestor of a Binary Tree

Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.

According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes p and q as the lowest node in T that has both p and q as descendants (where we allow a node to be a descendant of itself).”

Given the following binary tree: root = [3,5,1,6,2,0,8,null,null,7,4]

1

Example 1:

Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1
Output: 3
Explanation: The LCA of nodes 5 and 1 is 3.
Example 2:

Input: root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4
Output: 5
Explanation: The LCA of nodes 5 and 4 is 5, since a node can be a descendant of itself according to the LCA definition.

Note:

All of the nodes’ values will be unique.
p and q are different and both values will exist in the binary tree.
Accepted


我们在二叉树中来搜索p和q,然后从路径中找到最后一个相同的节点即为父节点,我们可以用递归来实现,在递归函数中,我们首先看当前结点是否为空,若为空则直接返回空,若为p或q中的任意一个,也直接返回当前结点。否则的话就对其左右子结点分别调用递归函数,由于这道题限制了p和q一定都在二叉树中存在,那么如果当前结点不等于p或q,p和q要么分别位于左右子树中,要么同时位于左子树,或者同时位于右子树,那么我们分别来讨论:

1)若p和q要么分别位于左右子树中,那么对左右子结点调用递归函数,会分别返回p和q结点的位置,而当前结点正好就是p和q的最小共同父结点,直接返回当前结点即可,这就是题目中的例子1的情况。

2)若p和q同时位于左子树,这里有两种情况,一种情况是left会返回p和q中较高的那个位置,而right会返回空,所以我们最终返回非空的left即可,这就是题目中的例子2的情况。还有一种情况是会返回p和q的最小父结点,就是说当前结点的左子树中的某个结点才是p和q的最小父结点,会被返回。

3)若p和q同时位于右子树,同样这里有两种情况,一种情况是right会返回p和q中较高的那个位置,而left会返回空,所以我们最终返回非空的right即可,还有一种情况是会返回p和q的最小父结点,就是说当前结点的右子树中的某个结点才是p和q的最小父结点,会被返回。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) {
if( root == nullptr or root == p or root == q )
{
return root;
}
TreeNode* left = lowestCommonAncestor( root->left, p, q );
TreeNode* right = lowestCommonAncestor( root->right, p, q );

if( left == nullptr )
{
return right;
}

if( right == nullptr )
{
return left;
}

return root;
}
};
Donate? comment?