面向对象编程基础-进阶

https://github.com/jackfrued/Python-100-Days

面向对象编程基础

把一组数据结构和处理它们的方法组成对象(object),把相同行为的对象归纳为类(class),通过类的封装(encapsulation)隐藏内部细节,通过继承(inheritance)实现类的特化(specialization)和泛化(generalization),通过多态(polymorphism)实现基于对象类型的动态分派。

定义类

在Python中可以使用class关键字定义类

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Student(object):

# __init__是一个特殊方法用于在创建对象时进行初始化操作
# 通过这个方法我们可以为学生对象绑定name和age两个属性
def __init__(self, name, age):
self.name = name
self.age = age

def study(self, course_name):
print('%s正在学习%s.' % (self.name, course_name))

# PEP 8要求标识符的名字用全小写多个单词用下划线连接
# 但是很多程序员和公司更倾向于使用驼峰命名法(驼峰标识)
def watch_av(self):
if self.age < 18:
print('%s只能观看《熊出没》.' % self.name)
else:
print('%s正在观看岛国爱情片.' % self.name)

写在类中的函数,我们通常称之为(对象的)方法,这些方法就是对象可以接收的消息。

创建和使用对象

当我们定义好一个类之后,可以通过下面的方式来创建对象并给对象发消息。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
def main():
# 创建学生对象并指定姓名和年龄
stu1 = Student('zzm', 18)
# 给对象发study消息
stu1.study('Python程序设计')
# 给对象发watch_av消息
stu1.watch_av()
stu2 = Student('王大锤', 15)
stu2.study('思想品德')
stu2.watch_av()


if __name__ == '__main__':
main()

访问可见性问题

在Python中,属性和方法的访问权限只有两种,也就是公开的和私有的,如果希望属性是私有的,在给属性命名时可以用两个下划线作为开头,下面的代码可以验证这一点。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Test:

def __init__(self, foo):
self.__foo = foo

def __bar(self):
print(self.__foo)
print('__bar')


def main():
test = Test('hello')
# AttributeError: 'Test' object has no attribute '__bar'
test.__bar()
# AttributeError: 'Test' object has no attribute '__foo'
print(test.__foo)


if __name__ == "__main__":
main()

但是,Python并没有从语法上严格保证私有属性或方法的私密性,它只是给私有的属性和方法换了一个名字来“妨碍”对它们的访问,事实上如果你知道更换名字的规则仍然可以访问到它们,下面的代码就可以验证这一点。之所以这样设定,可以用这样一句名言加以解释,就是“We are all consenting adults here”。因为绝大多数程序员都认为开放比封闭要好,而且程序员要自己为自己的行为负责。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
class Test:

def __init__(self, foo):
self.__foo = foo

def __bar(self):
print(self.__foo)
print('__bar')


def main():
test = Test('hello')
test._Test__bar()
print(test._Test__foo)


if __name__ == "__main__":
main()

在实际开发中,我们并不建议将属性设置为私有的,因为这会导致子类无法访问(后面会讲到)。所以大多数Python程序员会遵循一种命名惯例就是让属性名以单下划线开头来表示属性是受保护的,本类之外的代码在访问这样的属性时应该要保持慎重。这种做法并不是语法上的规则,单下划线开头的属性和方法外界仍然是可以访问的,所以更多的时候它是一种暗示或隐喻

面向对象的支柱

面向对象有三大支柱:封装、继承和多态。

封装是“隐藏一切可以隐藏的实现细节,只向外界暴露(提供)简单的编程接口”。我们在类中定义的方法其实就是把数据和对数据的操作封装起来了,在我们创建了对象之后,只需要给对象发送一个消息(调用方法)就可以执行方法中的代码,也就是说我们只需要知道方法的名字和传入的参数(方法的外部视图),而不需要知道方法内部的实现细节(方法的内部视图)。

定义一个类描述数字时钟

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class Clock(object):
"""数字时钟"""

def __init__(self, hour=0, minute=0, second=0):
"""初始化方法

:param hour: 时
:param minute: 分
:param second: 秒
"""
self._hour = hour
self._minute = minute
self._second = second

def run(self):
"""走字"""
self._second += 1
if self._second == 60:
self._second = 0
self._minute += 1
if self._minute == 60:
self._minute = 0
self._hour += 1
if self._hour == 24:
self._hour = 0

def show(self):
"""显示时间"""
return '%02d:%02d:%02d' % \
(self._hour, self._minute, self._second)


def main():
clock = Clock(23, 59, 58)
while True:
print(clock.show())
sleep(1)
clock.run()


if __name__ == '__main__':
main()

定义一个类描述平面上的点并提供移动点和计算到另一个点距离的方法。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from math import sqrt


class Point(object):

def __init__(self, x=0, y=0):
"""初始化方法

:param x: 横坐标
:param y: 纵坐标
"""
self.x = x
self.y = y

def move_to(self, x, y):
"""移动到指定位置

:param x: 新的横坐标
"param y: 新的纵坐标
"""
self.x = x
self.y = y

def move_by(self, dx, dy):
"""移动指定的增量

:param dx: 横坐标的增量
"param dy: 纵坐标的增量
"""
self.x += dx
self.y += dy

def distance_to(self, other):
"""计算与另一个点的距离

:param other: 另一个点
"""
dx = self.x - other.x
dy = self.y - other.y
return sqrt(dx ** 2 + dy ** 2)

def __str__(self):
return '(%s, %s)' % (str(self.x), str(self.y))


def main():
p1 = Point(3, 5)
p2 = Point()
print(p1)
print(p2)
p2.move_by(-1, 2)
print(p2)
print(p1.distance_to(p2))


if __name__ == '__main__':
main()

面向对象进阶

@property装饰器

之前我们讨论过Python中属性和方法访问权限的问题,虽然我们不建议将属性设置为私有的,但是如果直接将属性暴露给外界也是有问题的,比如我们没有办法检查赋给属性的值是否有效。我们之前的建议是将属性命名以单下划线开头,通过这种方式来暗示属性是受保护的,不建议外界直接访问,那么如果想访问属性可以通过属性的getter(访问器)和setter(修改器)方法进行对应的操作。如果要做到这点,就可以考虑使用@property包装器来包装getter和setter方法,使得对属性的访问既安全又方便

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class Person(object):

def __init__(self, name, age):
self._name = name
self._age = age

# 访问器 - getter方法
@property
def name(self):
return self._name

# 访问器 - getter方法
@property
def age(self):
return self._age

# 修改器 - setter方法
@age.setter
def age(self, age):
self._age = age

def play(self):
if self._age <= 16:
print('%s正在玩飞行棋.' % self._name)
else:
print('%s正在玩斗地主.' % self._name)


def main():
person = Person('王大锤', 12)
person.play()
person.age = 22
person.play()
# person.name = '白元芳' # AttributeError: can't set attribute


if __name__ == '__main__':
main()

slots魔法

我们讲到这里,不知道大家是否已经意识到,Python是一门动态语言。通常,动态语言允许我们在程序运行时给对象绑定新的属性或方法,当然也可以对已经绑定的属性和方法进行解绑定。但是如果我们需要限定自定义类型的对象只能绑定某些属性,可以通过在类中定义slots变量来进行限定。需要注意的是slots的限定只对当前类的对象生效,对子类并不起任何作用。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
class Person(object):

# 限定Person对象只能绑定_name, _age和_gender属性
__slots__ = ('_name', '_age', '_gender')

def __init__(self, name, age):
self._name = name
self._age = age

@property
def name(self):
return self._name

@property
def age(self):
return self._age

@age.setter
def age(self, age):
self._age = age

def play(self):
if self._age <= 16:
print('%s正在玩飞行棋.' % self._name)
else:
print('%s正在玩斗地主.' % self._name)


def main():
person = Person('王大锤', 22)
person.play()
person._gender = '男'
# AttributeError: 'Person' object has no attribute '_is_gay'
# person._is_gay = True

静态方法和类方法

之前,我们在类中定义的方法都是对象方法,也就是说这些方法都是发送给对象的消息。实际上,我们写在类中的方法并不需要都是对象方法,例如我们定义一个“三角形”类,通过传入三条边长来构造三角形,并提供计算周长和面积的方法,但是传入的三条边长未必能构造出三角形对象,因此我们可以先写一个方法来验证三条边长是否可以构成三角形,这个方法很显然就不是对象方法,因为在调用这个方法时三角形对象尚未创建出来(因为都不知道三条边能不能构成三角形),所以这个方法是属于三角形类而并不属于三角形对象的。我们可以使用静态方法来解决这类问题,

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
from math import sqrt


class Triangle(object):

def __init__(self, a, b, c):
self._a = a
self._b = b
self._c = c

@staticmethod
def is_valid(a, b, c):
return a + b > c and b + c > a and a + c > b

def perimeter(self):
return self._a + self._b + self._c

def area(self):
half = self.perimeter() / 2
return sqrt(half * (half - self._a) *
(half - self._b) * (half - self._c))


def main():
a, b, c = 3, 4, 5
# 静态方法和类方法都是通过给类发消息来调用的
if Triangle.is_valid(a, b, c):
t = Triangle(a, b, c)
print(t.perimeter())
# 也可以通过给类发消息来调用对象方法但是要传入接收消息的对象作为参数
# print(Triangle.perimeter(t))
print(t.area())
# print(Triangle.area(t))
else:
print('无法构成三角形.')


if __name__ == '__main__':
main()

和静态方法比较类似,Python还可以在类中定义类方法,类方法的第一个参数约定名为cls,它代表的是当前类相关的信息的对象(类本身也是一个对象,有的地方也称之为类的元数据对象),通过这个参数我们可以获取和类相关的信息并且可以创建出类的对象

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from time import time, localtime, sleep


class Clock(object):
"""数字时钟"""

def __init__(self, hour=0, minute=0, second=0):
self._hour = hour
self._minute = minute
self._second = second

@classmethod
def now(cls):
ctime = localtime(time())
return cls(ctime.tm_hour, ctime.tm_min, ctime.tm_sec)

def run(self):
"""走字"""
self._second += 1
if self._second == 60:
self._second = 0
self._minute += 1
if self._minute == 60:
self._minute = 0
self._hour += 1
if self._hour == 24:
self._hour = 0

def show(self):
"""显示时间"""
return '%02d:%02d:%02d' % \
(self._hour, self._minute, self._second)


def main():
# 通过类方法创建对象并获取系统时间
clock = Clock.now()
while True:
print(clock.show())
sleep(1)
clock.run()


if __name__ == '__main__':
main()

类之间的关系

简单的说,类和类之间的关系有三种:is-a、has-a和use-a关系。

  • is-a关系也叫继承或泛化,比如学生和人的关系、手机和电子产品的关系都属于继承关系。
  • has-a关系通常称之为关联,比如部门和员工的关系,汽车和引擎的关系都属于关联关系;关联关系如果是整体和部分的关联,那么我们称之为聚合关系;如果整体进一步负责了部分的生命周期(整体和部分是不可分割的,同时同在也同时消亡),那么这种就是最强的关联关系,我们称之为合成关系。
  • use-a关系通常称之为依赖,比如司机有一个驾驶的行为(方法),其中(的参数)使用到了汽车,那么司机和汽车的关系就是依赖关系。

继承和多态

刚才我们提到了,可以在已有类的基础上创建新类,这其中的一种做法就是让一个类从另一个类那里将属性和方法直接继承下来,从而减少重复代码的编写。提供继承信息的我们称之为父类,也叫超类或基类;得到继承信息的我们称之为子类,也叫派生类或衍生类。子类除了继承父类提供的属性和方法,还可以定义自己特有的属性和方法,所以子类比父类拥有的更多的能力,在实际开发中,我们经常会用子类对象去替换掉一个父类对象,这是面向对象编程中一个常见的行为,对应的原则称之为里氏替换原则。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
class Person(object):
"""人"""

def __init__(self, name, age):
self._name = name
self._age = age

@property
def name(self):
return self._name

@property
def age(self):
return self._age

@age.setter
def age(self, age):
self._age = age

def play(self):
print('%s正在愉快的玩耍.' % self._name)

def watch_av(self):
if self._age >= 18:
print('%s正在观看爱情动作片.' % self._name)
else:
print('%s只能观看《熊出没》.' % self._name)


class Student(Person):
"""学生"""

def __init__(self, name, age, grade):
super().__init__(name, age)
self._grade = grade

@property
def grade(self):
return self._grade

@grade.setter
def grade(self, grade):
self._grade = grade

def study(self, course):
print('%s的%s正在学习%s.' % (self._grade, self._name, course))


class Teacher(Person):
"""老师"""

def __init__(self, name, age, title):
super().__init__(name, age)
self._title = title

@property
def title(self):
return self._title

@title.setter
def title(self, title):
self._title = title

def teach(self, course):
print('%s%s正在讲%s.' % (self._name, self._title, course))


def main():
stu = Student('zzz', 15, '初三')
stu.study('数学')
stu.watch_av()
t = Teacher('zz', 38, 'aaa')
t.teach('Python程序设计')
t.watch_av()


if __name__ == '__main__':
main()

子类在继承了父类的方法后,可以对父类已有的方法给出新的实现版本,这个动作称之为方法重写(override)。通过方法重写我们可以让父类的同一个行为在子类中拥有不同的实现版本,当我们调用这个经过子类重写的方法时,不同的子类对象会表现出不同的行为,这个就是多态(poly-morphism)。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from abc import ABCMeta, abstractmethod


class Pet(object, metaclass=ABCMeta):
"""宠物"""

def __init__(self, nickname):
self._nickname = nickname

@abstractmethod
def make_voice(self):
"""发出声音"""
pass


class Dog(Pet):
"""狗"""

def make_voice(self):
print('%s: 汪汪汪...' % self._nickname)


class Cat(Pet):
"""猫"""

def make_voice(self):
print('%s: 喵...喵...' % self._nickname)


def main():
pets = [Dog('旺财'), Cat('凯蒂'), Dog('大黄')]
for pet in pets:
pet.make_voice()


if __name__ == '__main__':
main()

在上面的代码中,我们将Pet类处理成了一个抽象类,所谓抽象类就是不能够创建对象的类,这种类的存在就是专门为了让其他类去继承它。Python从语法层面并没有像Java或C#那样提供对抽象类的支持,但是我们可以通过abc模块的ABCMeta元类和abstractmethod包装器来达到抽象类的效果,如果一个类中存在抽象方法那么这个类就不能够实例化(创建对象)。上面的代码中,Dog和Cat两个子类分别对Pet类中的make_voice抽象方法进行了重写并给出了不同的实现版本,当我们在main函数中调用该方法时,这个方法就表现出了多态行为(同样的方法做了不同的事情)。

奥特曼打小怪兽

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
from abc import ABCMeta, abstractmethod
from random import randint, randrange


class Fighter(object, metaclass=ABCMeta):
"""战斗者"""

# 通过__slots__魔法限定对象可以绑定的成员变量
__slots__ = ('_name', '_hp')

def __init__(self, name, hp):
"""初始化方法

:param name: 名字
:param hp: 生命值
"""
self._name = name
self._hp = hp

@property
def name(self):
return self._name

@property
def hp(self):
return self._hp

@hp.setter
def hp(self, hp):
self._hp = hp if hp >= 0 else 0

@property
def alive(self):
return self._hp > 0

@abstractmethod
def attack(self, other):
"""攻击

:param other: 被攻击的对象
"""
pass


class Ultraman(Fighter):
"""奥特曼"""

__slots__ = ('_name', '_hp', '_mp')

def __init__(self, name, hp, mp):
"""初始化方法

:param name: 名字
:param hp: 生命值
:param mp: 魔法值
"""
super().__init__(name, hp)
self._mp = mp

def attack(self, other):
other.hp -= randint(15, 25)

def huge_attack(self, other):
"""究极必杀技(打掉对方至少50点或四分之三的血)

:param other: 被攻击的对象

:return: 使用成功返回True否则返回False
"""
if self._mp >= 50:
self._mp -= 50
injury = other.hp * 3 // 4
injury = injury if injury >= 50 else 50
other.hp -= injury
return True
else:
self.attack(other)
return False

def magic_attack(self, others):
"""魔法攻击

:param others: 被攻击的群体

:return: 使用魔法成功返回True否则返回False
"""
if self._mp >= 20:
self._mp -= 20
for temp in others:
if temp.alive:
temp.hp -= randint(10, 15)
return True
else:
return False

def resume(self):
"""恢复魔法值"""
incr_point = randint(1, 10)
self._mp += incr_point
return incr_point

def __str__(self):
return '~~~%s奥特曼~~~\n' % self._name + \
'生命值: %d\n' % self._hp + \
'魔法值: %d\n' % self._mp


class Monster(Fighter):
"""小怪兽"""

__slots__ = ('_name', '_hp')

def attack(self, other):
other.hp -= randint(10, 20)

def __str__(self):
return '~~~%s小怪兽~~~\n' % self._name + \
'生命值: %d\n' % self._hp


def is_any_alive(monsters):
"""判断有没有小怪兽是活着的"""
for monster in monsters:
if monster.alive > 0:
return True
return False


def select_alive_one(monsters):
"""选中一只活着的小怪兽"""
monsters_len = len(monsters)
while True:
index = randrange(monsters_len)
monster = monsters[index]
if monster.alive > 0:
return monster


def display_info(ultraman, monsters):
"""显示奥特曼和小怪兽的信息"""
print(ultraman)
for monster in monsters:
print(monster, end='')


def main():
u = Ultraman('骆昊', 1000, 120)
m1 = Monster('狄仁杰', 250)
m2 = Monster('白元芳', 500)
m3 = Monster('王大锤', 750)
ms = [m1, m2, m3]
fight_round = 1
while u.alive and is_any_alive(ms):
print('========第%02d回合========' % fight_round)
m = select_alive_one(ms) # 选中一只小怪兽
skill = randint(1, 10) # 通过随机数选择使用哪种技能
if skill <= 6: # 60%的概率使用普通攻击
print('%s使用普通攻击打了%s.' % (u.name, m.name))
u.attack(m)
print('%s的魔法值恢复了%d点.' % (u.name, u.resume()))
elif skill <= 9: # 30%的概率使用魔法攻击(可能因魔法值不足而失败)
if u.magic_attack(ms):
print('%s使用了魔法攻击.' % u.name)
else:
print('%s使用魔法失败.' % u.name)
else: # 10%的概率使用究极必杀技(如果魔法值不足则使用普通攻击)
if u.huge_attack(m):
print('%s使用究极必杀技虐了%s.' % (u.name, m.name))
else:
print('%s使用普通攻击打了%s.' % (u.name, m.name))
print('%s的魔法值恢复了%d点.' % (u.name, u.resume()))
if m.alive > 0: # 如果选中的小怪兽没有死就回击奥特曼
print('%s回击了%s.' % (m.name, u.name))
m.attack(u)
display_info(u, ms) # 每个回合结束后显示奥特曼和小怪兽的信息
fight_round += 1
print('\n========战斗结束!========\n')
if u.alive > 0:
print('%s奥特曼胜利!' % u.name)
else:
print('小怪兽胜利!')


if __name__ == '__main__':
main()

扑克游戏

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
import random


class Card(object):
"""一张牌"""

def __init__(self, suite, face):
self._suite = suite
self._face = face

@property
def face(self):
return self._face

@property
def suite(self):
return self._suite

def __str__(self):
if self._face == 1:
face_str = 'A'
elif self._face == 11:
face_str = 'J'
elif self._face == 12:
face_str = 'Q'
elif self._face == 13:
face_str = 'K'
else:
face_str = str(self._face)
return '%s%s' % (self._suite, face_str)

def __repr__(self):
return self.__str__()


class Poker(object):
"""一副牌"""

def __init__(self):
self._cards = [Card(suite, face)
for suite in '♠♥♣♦'
for face in range(1, 14)]
self._current = 0

@property
def cards(self):
return self._cards

def shuffle(self):
"""洗牌(随机乱序)"""
self._current = 0
random.shuffle(self._cards)

@property
def next(self):
"""发牌"""
card = self._cards[self._current]
self._current += 1
return card

@property
def has_next(self):
"""还有没有牌"""
return self._current < len(self._cards)


class Player(object):
"""玩家"""

def __init__(self, name):
self._name = name
self._cards_on_hand = []

@property
def name(self):
return self._name

@property
def cards_on_hand(self):
return self._cards_on_hand

def get(self, card):
"""摸牌"""
self._cards_on_hand.append(card)

def arrange(self, card_key):
"""玩家整理手上的牌"""
self._cards_on_hand.sort(key=card_key)


# 排序规则-先根据花色再根据点数排序
def get_key(card):
return (card.suite, card.face)


def main():
p = Poker()
p.shuffle()
players = [Player('东邪'), Player('西毒'), Player('南帝'), Player('北丐')]
for _ in range(13):
for player in players:
player.get(p.next)
for player in players:
print(player.name + ':', end=' ')
player.arrange(get_key)
print(player.cards_on_hand)


if __name__ == '__main__':
main()

工资结算系统

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
"""
某公司有三种类型的员工 分别是部门经理、程序员和销售员
需要设计一个工资结算系统 根据提供的员工信息来计算月薪
部门经理的月薪是每月固定15000元
程序员的月薪按本月工作时间计算 每小时150元
销售员的月薪是1200元的底薪加上销售额5%的提成
"""
from abc import ABCMeta, abstractmethod


class Employee(object, metaclass=ABCMeta):
"""员工"""

def __init__(self, name):
"""
初始化方法

:param name: 姓名
"""
self._name = name

@property
def name(self):
return self._name

@abstractmethod
def get_salary(self):
"""
获得月薪

:return: 月薪
"""
pass


class Manager(Employee):
"""部门经理"""

def get_salary(self):
return 15000.0


class Programmer(Employee):
"""程序员"""

def __init__(self, name, working_hour=0):
super().__init__(name)
self._working_hour = working_hour

@property
def working_hour(self):
return self._working_hour

@working_hour.setter
def working_hour(self, working_hour):
self._working_hour = working_hour if working_hour > 0 else 0

def get_salary(self):
return 150.0 * self._working_hour


class Salesman(Employee):
"""销售员"""

def __init__(self, name, sales=0):
super().__init__(name)
self._sales = sales

@property
def sales(self):
return self._sales

@sales.setter
def sales(self, sales):
self._sales = sales if sales > 0 else 0

def get_salary(self):
return 1200.0 + self._sales * 0.05


def main():
emps = [
Manager('刘备'), Programmer('诸葛亮'),
Manager('曹操'), Salesman('荀彧'),
Salesman('吕布'), Programmer('张辽'),
Programmer('赵云')
]
for emp in emps:
if isinstance(emp, Programmer):
emp.working_hour = int(input('请输入%s本月工作时间: ' % emp.name))
elif isinstance(emp, Salesman):
emp.sales = float(input('请输入%s本月销售额: ' % emp.name))
# 同样是接收get_salary这个消息但是不同的员工表现出了不同的行为(多态)
print('%s本月工资为: ¥%s元' %
(emp.name, emp.get_salary()))


if __name__ == '__main__':
main()
Donate? comment?