There are a total of n courses you have to take, labeled from 0 to n-1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?1
2
3
4
5
6
7
8
9
10
11
12
13Example 1:
Input: 2, [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0. So it is possible.
Example 2:
Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
To take course 1 you should have finished course 0, and to take course 0 you should
also have finished course 1. So it is impossible.
Note:
- The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
- You may assume that there are no duplicate edges in the input prerequisites.
BFS
BFS uses the indegrees of each node. We will first try to find a node with 0 indegree. If we fail to do so, there must be a cycle in the graph and we return false. Otherwise we set its indegree to be -1 to prevent from visiting it again and reduce the indegrees of its neighbors by 1. This process will be repeated for n (number of nodes) times.
1 | class Solution { |
DFS
For DFS, in each visit, we start from a node and keep visiting its neighbors, if at a time we return to a visited node, there is a cycle. Otherwise, start again from another unvisited node and repeat this process. We use todo and done for nodes to visit and visited nodes.
1 | class Solution { |